Exponential Codimension Growth of PI Algebras: An Exact Estimate

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Codimension Growth of G-graded Algebras

Let W be an associative PI affine algebra over a field F of characteristic zero. Suppose W is G-graded where G is a finite group. Let exp(W ) and exp(We) denote the codimension growth of W and of the identity component We, respectively. We prove: exp(W ) ≤ |G| exp(We). This inequality had been conjectured by Bahturin and Zaicev.

متن کامل

Minimal Varieties of Algebras of Exponential Growth

The exponent of a variety of algebras over a field of characteristic zero has been recently proved to be an integer. Through this scale we can now classify all minimal varieties of a given exponent and of finite basic rank. As a consequence we describe the corresponding T-ideals of the free algebra, and we compute the asymptotics of the related codimension sequences. We then verify in this sett...

متن کامل

APPROXIMATE IDENTITY IN CLOSED CODIMENSION ONE IDEALS OF SEMIGROUP ALGEBRAS

Let S be a locally compact topological foundation semigroup with identity and Ma(S) be its semigroup algebra. In this paper, we give necessary and sufficient conditions to have abounded approximate identity in closed codimension one ideals of the semigroup algebra $M_a(S)$ of a locally compact topological foundationsemigroup with identity.

متن کامل

An Improved Multiplicity Conjecture for Codimension Three Gorenstein Algebras

The Multiplicity Conjecture is a deep problem relating the multiplicity (or degree) of a Cohen-Macaulay standard graded algebra with certain extremal graded Betti numbers in its minimal free resolution. In the case of level algebras of codimension three, Zanello has proposed a stronger conjecture. We prove this conjecture for the case of codimension three graded Gorenstein algebras.

متن کامل

Codimension 1 Linear Isometries on Function Algebras

Let A be a function algebra on a locally compact Hausdorff space. A linear isometry T : A −→ A is said to be of codimension 1 if the range of T has codimension 1 in A. In this paper, we provide and study a classification of codimension 1 linear isometries on function algebras in general and on Douglas algebras in particular.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics

سال: 1999

ISSN: 0001-8708

DOI: 10.1006/aima.1998.1790